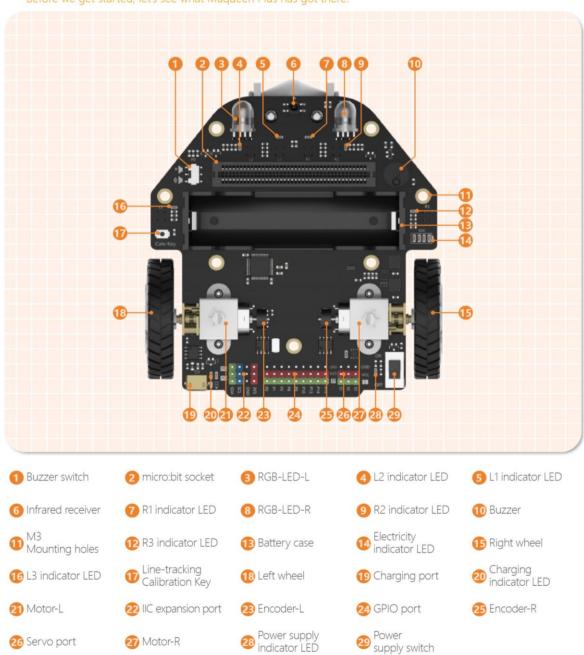

Bluguard Maqueen Plus

TABLE OF CONTENTS

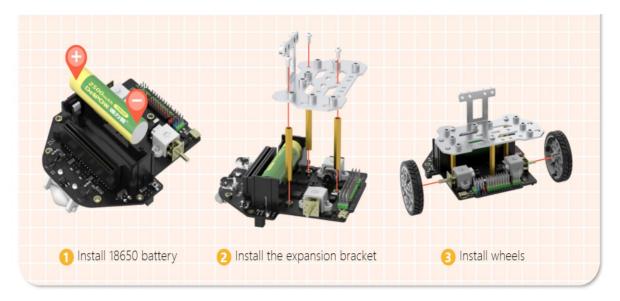

Chapter 1: Introduction to Bluguard Maqueen Plus	3
Chapter 2: Step to Calibrate Line Tracking Sensor	7
Chapter 3: Import the MakeCode Graphical Library	9
Chapter 4: Line Follower Moving Along Circle	11
Chapter 5: Line Follower Moving Along Cross Line	15
Chapter 6: Obstacle Avoidance Robot	20
Chapter 7: Car Park Helper	26
Chapter 8: PID Control for Bluguard Maqueen Plus	
Chapter 9: Play Music with RGB Light Blinking	
Chapter 10: Light Chaser	
Chapter 11: Motion Sensing Racing Car	

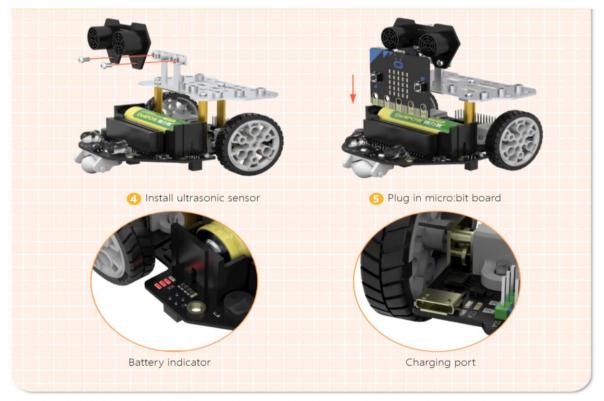
Chapter 1: Introduction to Bluguard Maqueen Plus

Bluguard Maqueen Plus is a wonderful educational robot customized for young children. It can be programmable via Mind+ and MakeCode platforms, allowing users to execute awesome functions by simply dragging and placing the graphical blocks. It is equipped with a rechargeable Lithium battery 18650.

Suggest Age: 8 +

Adult supervision is recommended for children under 8 years old.




Before we get started, let's see what Maqueen Plus has got there.

Bluguard Maqueen Plus Assembly Guide

Note: Bluguard Maqueen Plus is equipped with a lithium battery. Make sure the correct polarity when installing a battery and avoid short circuit the battery's terminals.

Note: when the battery is fully charged, all LEDs will be on. The LEDs will be off one by one as the power gradually decreases. If all lights go out, the battery needs to be recharged.

Specification:

- 1. Power Supply: 3.7V 18650 lithium battery
- 2. Charging Voltage: 5V Charging Current: 900mA
- 3. Charging Time: about 4hours
- 4. Power Indicator: 4 LEDs
- 5. Motor Specification: N20 motor 260 R/M
- 6. Buzzer x1
- 7. RGB Light x2
- 8. GPIO Expansion Port: P0 P1 P2 P8 P12 P13 P14 P15 P16
- 9. I2C Port: x3
- 10. Servo Expansion Port: x3
- 11. Line-tracking Sensor x6
- 12. Line-tracking Sensor Output: digital +analog
- 13. Support Calibration for Line-tracking Sensor
- 14. IR Receiving Sensor x1 Ultrasonic Sensor: URM10
- 15. Top Metal Plate: x1
- 16. M3 Threaded Connections x12
- 17. Map Size: 50cmx50cm
- 18. Product Dimension: 107x100mm/4.21 x3.94"

Packing List:

- Maqueen Plus x 1
- Ultrasonic Sensor x 1
- Top Metal Plate x 1
- Wheel x 2
- Copper Pillar x 3
- Instructions x 1
- Line-tracking Map x 1

Note: micro:bit and the 18650 lithium battery are not included

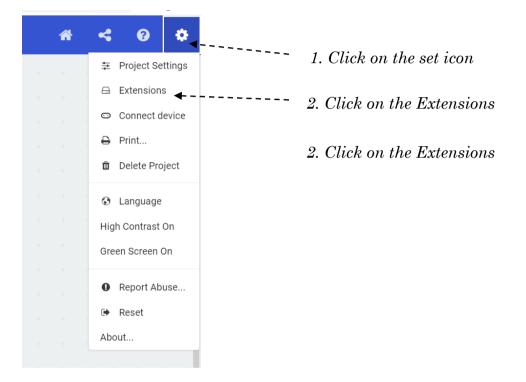
Chapter 2: Step to Calibrate Line Tracking Sensor

Bluguard Maqueen Plus is equipped with 6 line-tracking sensors and come with dedicated indicators. The designated indicator will light up in the event of a line-tracking sensor detecting a black line. You may perform the following calibration if your line-tracking sensor is not sensitive to a black line.

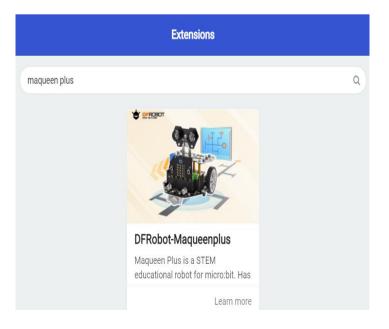
1. Place the Bluguard Maqueen Plus into the calibration area of the line-tracking map, and switch on its power.

2. Press "Calc-key" for about 1 second, the 2 front large LEDs will flash in green. Upon release of the key, the calibration is completed.

3. If all the line-tracking sensor indicators are turned on in the black area and turned off in the white area, the calibration is completed.


Note:

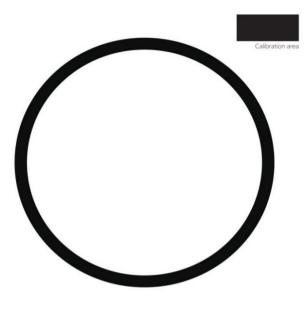
1. The internal chip will automatically save the calibration configuration. Thus, users do not need to calibrate it every time.


2. Bluguard Maqueen Plus has been factory calibrated, and it can be used directly normally.

Chapter 3: Import the MakeCode Graphical Library

- Click the link <u>https://makecode.microbit.org</u>, enter the makecode graphical online programming platform and create **New Project**. (Note: Loading will be slow the first time, please wait patiently)
- 2. Import the extensions.

3. Click on Search and type the 'Maqueen plus'. Click on the Maqueen plus's library after searching out.

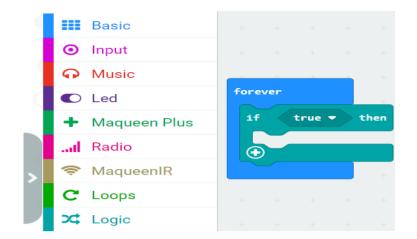


4. Import completed.

	Mic	crosoft 💿 n	nicro:bit
	Sear	ch	Q + Maqueen Plus
	===	Basic	initialize via I2C until success
	•	Input	PID switch OFF -
	ନ	Music	
	O	Led	motor left ▼ direction rotate forward ▼ speed 0
	+	Maqueen Plus	Motor left - stop
	aıl	Radio	read motor left • speed
>	Ģ	MaqueenIR	<pre>read motor left direction(stop:0,forward:1,back:2)</pre>
	С	Loops	clear the revolutions of wheel left ▼
	x ;	Logic	
	≡	Variables	get the revolutions of wheel left ▼
	Ħ	Math	read line-tracking sensor L1 ♥
	~	Advanced	read line-tracking sensor L1 ▼ grayscale
	-		set RGB_L ▼ color Red ▼
			servo S1 ▼ angle 0

Chapter 4: Line Follower Moving Along Circle

You may operate and turn on the Bluguard Maqueen Plus into a line follower and program it to move along the circle track on the map.



Step of Makecode Graphical Program:

1. Add and drag the block 'initialize via I2C until success' (Maqueen Plus) and 'PID switch [OFF]' (Maqueen Plus) to the block 'on start' (Basic).

2. Add the block 'forever' (Basic) and block 'if...then' (Logic).

3. Add the block '[0] = [0]' (Logic) and 'read line-tracking sensor [L1]' (Maqueen Plus). Replace the value '[0]' with 'read line-tracking sensor [L1]' and change another value '[0]' to '[1]'.

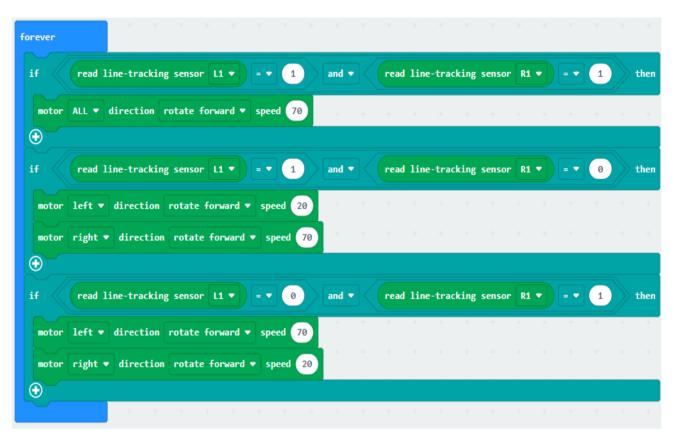
4. Duplicate the step 3 block and change '[L1]' to '[R1]'.

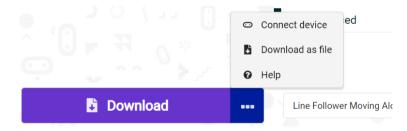
5. For condition 'if', add the block '[] and []' (Logic). Slot in '[block step 3] and [block step 4]'.

orever	-																					
	-	+	-		-+-		-	-				+			+		+	+				
if 🧹	read li	ne-tra	cking	senso	or L1	-	= 🔻	1	>	and •	77	read	line	-tracl	cing	sensor	R1	•	= 🔻	1		the
																					//	
	+ +	-						-					-					-				

6. For condition 'then', add the block 'motor [ALL] direction [rotate forward] speed [70]' (Maqueen Plus).

forever		+ +	+	* *	+ +	+		+	+ +
if read 1	line-tracking sensor L1 🔻 💷 1	and 🛡	read	line-trac	king sens	or R1 🔻		1	then
motor ALL 🔻	direction rotate forward ▼ speed 70	+ +	+	+ +	+ +	+	+ +	+	+ +
\odot									

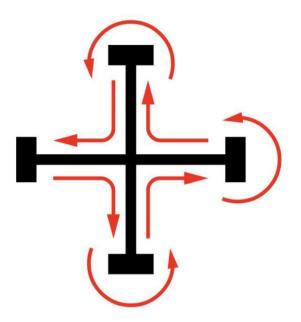

Add the 2nd block 'if...then' (Logic). Duplicate block of 1st condition 'if''[----] and [---]' and change 'read line-tracking sensor [R1] = [0]'.


 For condition 'then', add the block 'motor [left] direction [rotate forward] speed [20]' (Maqueen Plus) and 'motor [right] direction [rotate forward] speed [70]' (Maqueen Plus).

+ + + + + + + + +	+	+	+	+	+ +	+	+	+	+	+	+	+
if read line-tracking sensor L1 • = • 1	and 🔻		read	line-	tracking	sensor	R1		= 🔻	1		then
motor ALL ▼ direction rotate forward ▼ speed 70	+	÷	+	+	+ +	+	÷	÷		+	+	+
if read line-tracking sensor L1 • = • 1	and 🔻		read	line-	tracking	sensor	R1		= 🔻	0		then
motor left 🔻 direction rotate forward 💌 speed 20	+	÷	+	+	+ +	+	÷	+		+	+	+
motor right 🔻 direction rotate forward 🔻 speed 70												
\odot												

 Duplicate block of 2nd condition 'if...then'. For condition 'if', change value 'read...[L1]=[0]' and 'read...[R1]=[1]'. For condition 'then', change 'motor [left]...[rotate forward]...[70]' and 'motor [right]...[rotate forward]...[20]'.

10. Go to 'connect device' after connecting micro:bit with cable. Just follow instructions and this step is just a one-time setup.

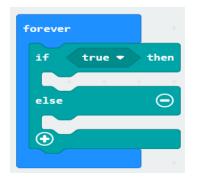

11. Click **Download** to transfer your code to micro:bit.

Program Link :

https://makecode.microbit.org/_g2f9aUAmU6sw

Chapter 5: Line Follower Moving Along Cross Line

In this chapter, you may program Maqueen Plus to drive along the cross line on the track map. 4 line-tracking sensors will be used in this chapter.



Step of Makecode Graphical Program:

1. Add and drag the block 'initialize via I2C until success' (Maqueen Plus) and 'PID switch [OFF]' (Maqueen Plus) to the block 'on start' (Basic).

2. Add and slot the block 'if...then...else' (Logic) into block 'forever' (Basic).

 Add the block '[0] = [0]' (Logic) and 'read line-tracking sensor [L1]' (Maqueen Plus). Replace the value '[0]' with 'read line-tracking sensor [L1]' and change another value '[0]' to '[1]'.

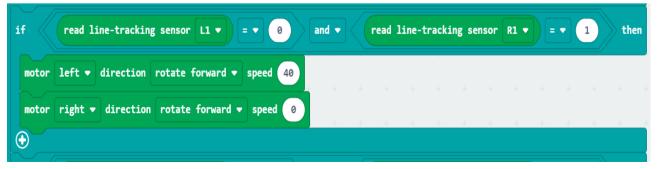
4. Duplicate the step 3 block and change '[L1]' to '[R1]'.

5. For condition 'if', add the block '[] and []' (Logic). Slot in '[block step 3] and [block step 4]'.

forever		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
if	read :	line-1	track:	ing se	ensor	L1 •		= 🔻 (1	a	nd 🔻		read 1	line-t	racki	ng ser	nsor	R1 🔻		•	1	then
else																						Θ
	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ -
		+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+

6. For condition 'then', add the block 'motor [ALL] direction [rotate forward] speed [40]' (Maqueen Plus).

forever	+ + ·	+ + +	+ + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
if read 1	line-tracking	sensor L1	1	and •	read 1	ine-trackinį	g sensor (R1 🔻 = 🔻	1	then
motor ALL 🔻	direction r	otate forwar	d 🔻 speed 🛛 40							
else										Θ
\rightarrow										
	+ + -	+ + +	+ + +	+ +	+ +	+ +	+ +	+ +	+ +	


7. For condition 'else', add the block 'if...then' (Logic). Duplicate block of 1st condition 'if''[----] and [----]' and change 'read line-tracking sensor [R1] = [0]'.

if	read line-trackin	g sensor l	.1 🔻 🗧	• 1	and 🔻	read line	-tracking se	nsor R1 🔻		1	> ther
motor	ALL • direction	rotate for	vard 🔻 sp	eed 40							
else					+ +	+ + 4		+ +	* *		Θ
if	read line-track	ing sensor	L1 •	= 🕶 🚺	and 🔻	read li	ne-tracking s	ensor R1	• = •	0	th


8. For condition 'then', add the block 'motor [left] direction [rotate forward] speed [0]' (Maqueen Plus) and 'motor [right] direction [rotate forward] speed [40]'.

forever	+ + +	+ +	+ + +	+ +	+	+ +	+	+	+	+	+ •	+ +	+	+
if read	line-tracking	sensor L1 🔻	= • 1	and 🔻	re	ad line	-tracki	ing se	nsor	R1 🔻	= -	1) tł	hen
motor ALL 🔻	direction ro	tate forward •	speed 40		+	+ +	-	-	-+-	+		+ +	-	
else													(Θ
if read	d line-trackin	g sensor L1 🖣		and	-	read lin	ne-trac	king s	sensor	R1 •		• 0		then
motor left	 direction 	rotate forwar	rd 🔻 speed	0	+	+ +	+	+	+	+	+ •	+ +	+	+
motor right	t 🔻 direction	rotate forwa	ard 🔻 speed	40										
\odot														
\odot														

 Duplicate block of condition 'if...then'. For condition 'if', change value 'read...[L1]=[0]' and 'read...[R1]=[1]'. For condition 'then', change 'motor [left]...[rotate forward]...[40]' and 'motor [right]...[rotate forward]...[0]'.

 Duplicate block of condition 'if...then'. For condition 'if', change value 'read...[L1]=[0]' and 'read...[R1]=[0]'. For condition 'then', change 'motor [left]...[rotate forward]...[40]' and 'motor [right]...[backward]...[40]'.

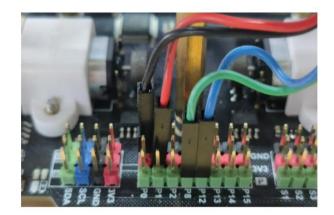
11. Duplicate block of condition 'if...then'. For condition 'if', change value 'read...[L2]=[1]' and 'read...[R2]=[1]'. For condition 'then', change 'motor [left]...[rotate forward]...[40]' and 'motor [right]...[backward]...[40]'.

if 🤇	read line-tracking sensor L2 🔻 = 💌	1	and 🔻		read	line-t	racking	sensor	R2 ▼	= -	1	then
motor	<pre>left ▼ direction rotate forward ▼ speed</pre>	40	+	+	+	+ +	+	+	+ +	+	+	+ +
motor	right ▼ direction backward ▼ speed 40	+	+	+	+	+ +	+	+	+ +	+	+	+ +

12. Slot in steps 9, 10 and 11 as shown below.

rever	A second se second second sec second second sec
16	read line-tracking sensor Li • = • 1 and • read line-tracking sensor Ri • = • 1 then
motor	ALL - direction rotate forward - speed 40
else	Θ
if	read line-tracking sensor L1 V = V 1 and V read line-tracking sensor R1 V = V 0 th
motor	left - direction rotate forward - speed 0
motor	right - direction rotate forward - speed 40
\odot	
if	read line-tracking sensor L1 V = V 0 and V read line-tracking sensor R1 V = V 1 th
motor	left - direction rotate forward - speed 40
motor	right - direction rotate forward - speed 0
\odot	
if	read line-tracking sensor L1 V = V 0 and V read line-tracking sensor R1 V = V 0 th
motor	left - direction rotate forward - speed 40
motor	right - direction backward - speed 40
\odot	
Ð	
1f	read line-tracking sensor L2 • = • 1 and • read line-tracking sensor R2 • = • 1 then
motor	left 👻 direction rotate forward 👻 speed 40
motor	right - direction backward - speed 40
0	

13. Click **Download** to transfer your code to micro:bit.


Program Link :

https://makecode.microbit.org/_37qXCL1oLX1s

Chapter 6: Obstacle Avoidance Robot

The ultrasonic sensor continuously measures and detects the distance between the Bluguard Maqueen Plus and the obstacle ahead in moving, when the distance is smaller than 20cm, Bluguard Maqueen Plus would turn left or right to avoid the obstacle.

You may connect the ultrasonic sensor to P8(green wire) and P12(blue wire), the designated port setting in the program. The red wire should be connected to a 3.3V port and the black one to a GND port.

Step of Makecode Graphical Program:

1. Add and drag the block 'initialize via I2C until success' (Maqueen Plus) and 'PID switch [OFF]' (Maqueen Plus) to the block 'on start' (Basic).

 Go to (Variables) and make a variable 'S'. Add the block 'set [S] to [0]' (Variables). Replace the '[0]' with 'read ultrasonic sensor TRIG [P8] ECHO [P12] Company:CM' (Maqueen Plus) into block 'forever' (Basic).

foreve	r			+	+ +	· +	+	+	+	+	+	+ +	
set	S 🔻	to	read	ulti	rasonic	sensor	TRIG	P8 🔻	ECHO	P12	•	Company:	СМ

3. Add the block 'if...then...else' (Logic).

forevei	r		+	+ +	+	+	+ +	+	+	+ +	+
set	s 🔹	to	read	ultrasonic	senso	r TRIG	5 P8 🔻	ЕСНО	P12 -	Compan	у:см
if	tru	e 🔻	then	· +	+	+	+ +	+	+	+ +	+
	+	+	+	+ +							
else	_		Θ								
\odot				· +							
			+	+ +							

4. Add the block '[0] < [0]' (Logic) and 'S' (Variables). Replace the value '[0]' with 'S' and change another value '[0]' to '[20]'.

5. Duplicate the step 4 block and change (<]' to $(\neq]'$ and (20)' to (0)'.

6. For condition 'if', add the block '[] and []' (Logic). Slot in '[block step 4] and [block step 5]'.

forever			+											
set	s 🔻	to	read	ultra	sonic	sens	or TR	IG P	8 🔻	ЕСНО	P12 🔻	Comp	any : CM	1
if <	s	D	< -	20		and 🖣		s •	#	- (0	then	+	
											/		+	
else						+						Θ		
\odot														

 Create a variable 'Direction' (Variables). For condition 'then', add the block 'set [Direction] to [0]' (Variables). Replace the '[0]' with 'pick random true or false' (Math).

orever		+								
set S	▼ to	read	ultrason	ic sens	or TRIG	P8 -	ЕСНО	P12 -	Comp	any:CM
if	5.		20	and 🖣		D	≠ ▼	0	then	+ +
set	Direct	ion 🔻	to pi	ck rand	om true	or fai	Lse	+	-+-	+ +
else									Θ	+ +
\odot										+ +
		+	+ +	+	-+-	+ +	-+-	+		+ +

8. Add the block 'if...then...else' (Logic).

forever	+									
set S 🔻	to read	ultrasonic	: sens	or TR	IG P	8 🗕	ЕСНО	P12 🔻	Comp	any:CM
if		20	and •		s •	*	- (•	then	+ +
set Dir	ection 👻	to pick	rand	om tri	ie or	false		+	+	+ +
if t	-ue 🖛 th	en 💡	+	+	+-	-+				
else		→ →								
		+	+	+	+	+	+	+		+ +
else									Θ	+ +
\odot										+ +
	+									

For condition 'if', add the block '[0] = [0]' (Logic) and change it to '[Direction] = [true]' (Logic).

forever						
set S 🕶 to rea	d ultrasonic	sensor TR	IG P8 🔻	ЕСНО РЗ	.2 🔻 Con	ipany : CM
if S 🗸 <	- 20	and 🔻	5 7 #	• 0	the	n + +
set Direction 🖣	to pick	random tr	ue or fals	e		
if Directio	on 🕶 💷 🔻	true 🕶	then			
	+ +	+ +				
else			Θ			
				+	+ +	+ +
else					e	+ +
\odot						+ +
+	+ +	+ +	+ +	+	+ +	+ +

10. For condition 'then', add the block 'motor [left] direction [rotate forward] speed [100]' (Maqueen Plus) and 'motor [right] direction [rotate forward] speed [0]'. After that, add the block 'pause (ms) [1000]' (Basic).

forever	+ +									
set S 👻 to	read ultra	asonic	sensor	TRIG PE	8 - E	СНО Р	12 🔻	Comp	any:CM	
if S.	< 🔻 20		and 🔻 <	S.	≠ •	0		then	+ +	+
set Directio	on 💌 to <	pick	random [·]	true or	false					
if Direc	tion 🔹	= 🔹 <	true	-) t	then	+				
motor left	 direct 	ion r	otate fo	orward 🔻	> spe	ed 10	90			
motor right	t 🔻 direc	tion I	rotate d	Forward	▼ sp	eed	0			
pause (ms)	1000 🔻	+	+ +	+	+	+	+			
else					Θ					
+	+ +	+	+ +	+	-+-					
else						+	+	Θ	+ +	
•									+	
	+ +									

11. For condition 'else', add the block 'motor [left] direction [rotate forward] speed [0]' (Maqueen Plus) and 'motor [right] direction [rotate forward] speed [100]'. After that add the block 'pause (ms) [1000]' (Basic).

forever + + + + + + +		
set S ▼ to read ultrasonic sensor TRIG P8 ▼ ECHO P12 ▼	Comp	any:CM
if $\mathbf{S} \cdot \mathbf{v} \cdot \mathbf{v} = 20$ and $\mathbf{v} = \mathbf{S} \cdot \mathbf{v} \neq \mathbf{v} = 0$	then	+ +
set Direction ▼ to pick random true or false		
if Direction ▼ = ▼ true ▼ then		
motor left - direction rotate forward - speed 100		
motor right - direction rotate forward - speed 0		
pause (ms) 1000 🗸		
else \ominus		
motor left 🕶 direction rotate forward 🕶 speed 📀		
motor right 🔻 direction rotate forward 👻 speed 100		
pause (ms) 1000 🔻	-	
		+ +
else	Θ	+ +
		+ +
		+ +

12. For conditon 'else', add the block 'motor [ALL] direction [rotate forward] speed [100]' (Maqueen Plus).

forever		
set S ▼ to read ultrasonic sensor TRIG P8 ▼ ECHO P12 ▼	Comp	any:CM
if $\mathbf{S} \mathbf{v} \mathbf{v} \mathbf{v} 20$ and $\mathbf{v} \mathbf{S} \mathbf{v} \mathbf{v} \mathbf{v} 0$	then	+ + + +
set Direction - to pick random true or false		
if Direction ▼ = ▼ true ▼ then		
motor left - direction rotate forward - speed 100		
motor right - direction rotate forward - speed 0		
pause (ms) 1000 🔻		
else Θ + +		
motor left - direction rotate forward - speed 0		
motor right - direction rotate forward - speed 100		
pause (ms) 1000 🔻		
		+ +
else	Θ	+ +
motor ALL - direction rotate forward - speed 100	+	
		+ +
+ + + + + + + +		

13. Click **Download** to transfer your code to micro:bit.

Program Link :

https://makecode.microbit.org/_7R0icURoX6Ed

Chapter 7: Car Park Helper

Nowadays, reversing radar systems are commonly installed in the car to assist the driver to help the driver reverse and park the car more safely and easily. The reversing radar system can detect the distance between the car and obstacle via ultrasonic sensors, then alert users by beeps or the dashboard display.

Here, you may learn how to measure the distance back of the Blugard Maqueen Plus and obstacles. First, we need to install an ultrasonic sensor facing the back direction.

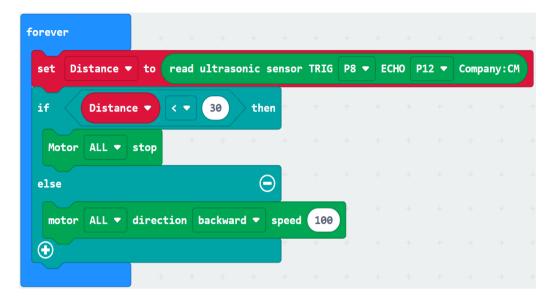
Step of Makecode Graphical Program:

1. Create a variable 'Distance' (Variables). Add the block 'set [Distance] to [0]' (Variables). Replace the '[0]' with 'read ultrasonic sensor TRIG [P8] ECHO [P12] Company:CM' (Maqueen Plus) into block 'forever' (Basic).

foreve	r	+	+	+ •	+ +	+	+	+ +	+	+ +	-
set	Distance 🔻	to	read	ultrasoni	.c senso	r TRIG	P8 🔻	ЕСНО	P12 🔻	Company:	СМ
		+	+	+ •	+ +	+	+	+ +	+	+ +	

2. Add the block 'if...then...else' (Logic).

forever		+	+	+ +	+	+	+	+ +	+	+	+	+
set Dis	tance 🔻	to	read	ultrasonio	: sensor	TRIG	P8 🔻	ECHO	P12 🔻	Compa	any:CM	
if tr	ue 🔻 t	:hen	+	+ +	+	+	+	+ +	+	+	+	+
else												
\odot												


For condition 'if', add the block '[0] < [0]' (Logic) and change it to '[Distance] < [30]' (Logic).

4. For condition 'then', add the block 'Motor [ALL] stop' (Maqueen Plus).

forever	+ +	+ +	+ +	+	+ +	+	+	+ +
set Distance 🔻 to	read ul	trasonic se.	nsor TRIG	P8 -	ECHO	P12 🔻	Company	/: CM
if Distance •		30 then	+ +	+	+ +	+	+	+ +
Motor ALL 🔻 stop	+	+ +	+ +					
else		Θ	+ +					
	+ +	+ +	+ +					
			+ +					

5. For condition 'else', add the block 'Motor [ALL] direction [backward] speed [100]' (Maqueen Plus).

6. Add the block 'if...then...else' (Logic).

forever	+	+ +	+	+	+	+	+	+	+ +	+
set Distance → to	read	ultraso	nic ser	isor 1	RIG	P8 🔻	ECHO	P12 🔻	Company	у: СМ
if Distance •	< •	30	then	+	+	+	+	+	+ +	+
Motor ALL 🕶 stop	+	+ +	+							
else			Θ							
motor ALL ▼ dired	ction	backward	d ▼ sp	beed	100	+				
if true ▼ th	en					+				
else (Э									
	-+									
\odot										
+										

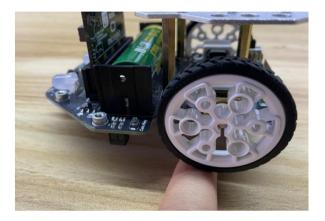
For condition 'if', add the block '[0] < [0]' (Logic) and change it to '[Distance] < [200]' (Logic).

8. For condition 'then', add the block 'play tone [Middle C] for [1 beat]' (Music).

forever											
set Distance ▼	to 🔽	ead ultra	sonic se	isor Ti	RIG	P8 🔻	ЕСНО	P12 -	- C	ompany	: СМ
if Distance		• 30	then	+	+	+	+	+	+	+	+
Motor ALL 🔻 s	top	+	+ +	+							
else			Θ	+							
motor ALL 🔻 d	lirectio	on backw	ard 🔻 sp	eed :	100	+					
if Distan	ce 🔻	< - 2	00) th	en		+					
play tone Mi	ddle C	for 1	▼ beat	+							
else			(Э							
\odot											
\odot				+							

9. For condition 'else', add the block 'stop melody [all]' (Music).

	stance 🔻	to read	ultraso	nic sen	sor T	RIG	P8 🔻	ЕСНО	P12 •	- C	ompany	/:C
if	Distance		30	then								
Motor	ALL 🔻 st	op	+ +	+								
else				Θ								
motor	ALL 🔻 di	rection	backward	l 🔻 sp	eed	100	+					
if	Distanc		- 200	the	en	+	+					
		dle C f	or 1 🔻	beat								
play	tone Mid											
play else	tone Mid			6	Э							
else	tone Mid		+ +									

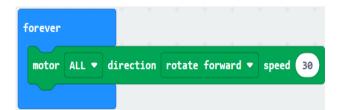

10. Click **Download** to transfer your code to micro:bit.

Program Link :

https://makecode.microbit.org/_Kh8a0tcEzXTy

Chapter 8: PID Control for Bluguard Maqueen Plus

PID is used to adjust the speed of the two motors and provide sufficient torque at various speeds. Bluguard Maqueen Plus is equipped with an onboard encoder and PID control function, allowing a user to adjust the torque and speed of a motor in real-time. You may download the program, and try letting Maqueen Plus climb across some small obstacles like a finger, eraser, etc.



Step of Makecode Graphical Program:

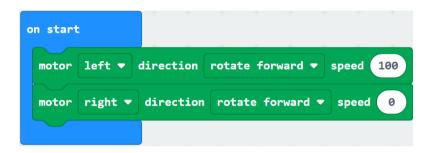
1. Add and drag the block 'initialize via I2C until success' (Maqueen Plus) and 'PID switch [ON]' (Maqueen Plus) to the block 'on start' (Basic).

on start			
initialize via I20	c unt	il su	ccess
PID switch ON 🔻	+	+	+
	+		

2. Add the block 'motor [ALL] direction [rotate forward] speed [30]' (Maqueen Plus) to the block 'forever' (Basic).

3. Click **Download** to transfer your code to micro:bit.

Program Link :


https://makecode.microbit.org/_5ejfYY6TpXef

Chapter 9: Play Music with RGB Light Blinking

This demo will show you how to program the buzzer module and the RGB light module.

Step of Makecode Graphical Program:

1. Add the block 'motor [left] direction [rotate forward] speed [100]' (Maqueen Plus) and 'motor [right] direction [rotate forward] speed [0]' to the block 'on start' (Basic).

2. Add the block 'start melody [entertainer] repeating [forever in background]' (Music).

on start	:	+ +						
motor	left 🔻	direction	rotat	te forward	- speed	100	+	
motor	right 🛡	direction	rota	ate forward	▼ speed	0	÷	
start	melody	entertaine	r 🔻	repeating	forever	in bad	ckgrou	nd 🔻

3. Add the block 'set [RGB_L] color [Red]' (Maqueen Plus), 'set [RGB_R] color [Blue]' and block 'pause (ms) [500]' (Basic) to block 'forever' (Basic).

foreve	r	+	+ +
set	RGB_L ▼	color	Red 🔻
set	RGB_R 🔻	color	Blue 🔻
paus	e (ms) 50	90 -	+ +

4. Add the block 'set [RGB_L] color [Blue]' (Maqueen Plus), 'set [RGB_R] color [Red]' and block 'pause (ms) [500]' (Basic).

5. Click **Download** to transfer your code to micro:bit.

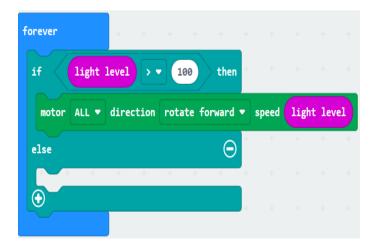
Program Link :

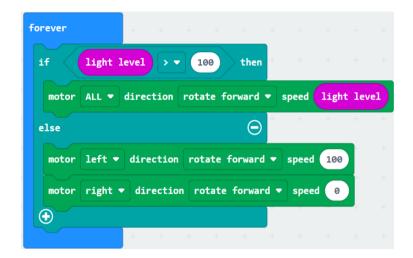
https://makecode.microbit.org/_LPD6mF9bDhXF

Chapter 10: Light Chaser

When the light level is more than the given value (eg: 100), Bluguard Maqueen Plus will move towards the light source, otherwise, it will revolve around its centre.

Step of Makecode Graphical Program:


1. Add the block 'forever' (Basic), 'if...then...else' (Logic)' and '[0] > [0]' (Logic).


2. For condition 'if', replace left '[0]' with '[light level]' (Input). Change the value another '[0]' to '[100]'.

forever	+				
if light	t level		- 1	00	then
+ + +	+	+	+	+	+
else					Θ
\odot					
	+				+

3. For condition 'then', add the block 'motor [ALL] direction [rotate forward] speed [0]' (Maqueen Plus) and replace '[0]' with '[light level]' (Input).

4. For condition 'else', add the block 'motor [left] direction [rotate forward] speed [100]' (Maqueen Plus) and 'motor [right] direction [rotate forward] speed [0]'.

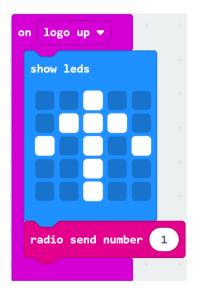
5. Click **Download** to transfer your code to micro:bit.

Program Link :

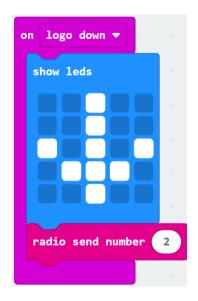
https://makecode.microbit.org/_5wDX5sco2He4

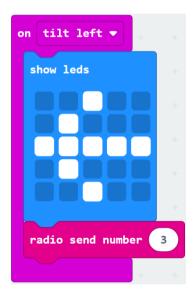
Chapter 11: Motion Sensing Racing Car

This chapter consists of lessons on how to control the movement of Bluguard Maqueen Plus by changing the direction of the remote controller. Bluguard Maqueen Plus can execute the motion-sensing since the accelerometer on the micro:bit can simultaneously detect the orientation of the board.

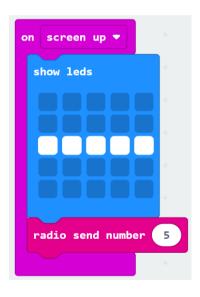

We need two micro:bits to perform radio communication. One for sending out signal (transmitting end), one for receiving a signal (receiving end).

Step of Makecode Graphical Program:

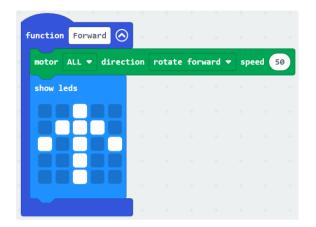

- 1. Create a new project name 'Motion Sensing Racing Car Transmitting end'.
- 2. To enable the radio communication, add the block 'radio set group [1]' (Radio) in the block 'on start' (Basic).

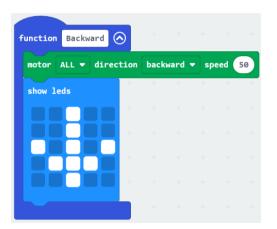

3. Add the block 'on [logo up]' (Input). Add the block 'show leds [[†]]' (Basic) and the block 'radio send number [1]' (Radio).

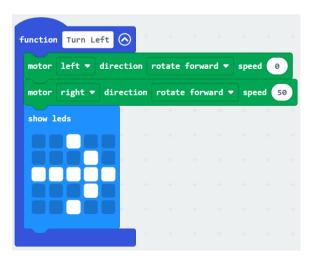
 Add the block 'on [logo down]' (Input). Add the block 'show leds [↓]' (Basic) and the block 'radio send number [2]' (Radio).


5. Add the block 'on [tilt left]' (Input). Add the block 'show leds [←]' (Basic) and the block 'radio send number [3]' (Radio).

6. Add the block 'on [tilt right]' (Input). Add the block 'show leds [→]' (Basic) and the block 'radio send number [4]' (Radio).

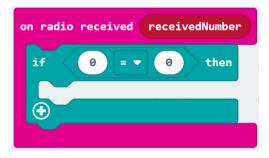

7. Add the block 'on [screen up]' (Input). Add the block 'show leds [---]' (Basic) and the block 'radio sends number [5]' (Radio).


- 8. Click **Download** to transfer your code to 1st unit micro:bit.
- 9. Create a new project name 'Motion Sensing Racing Car Receiving end'.
- 10. To enable the radio communication, add the block 'radio set group [1]' (Radio) in the block 'on start' (Basic).

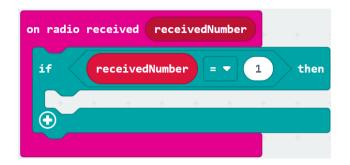

11. Add the block 'function [Forward]' (Function) and the block 'motor [ALL] direction [rotate forward] speed [50]' (Maqueen Plus). Add the block 'show LEDs [[↑]]' (Basic).

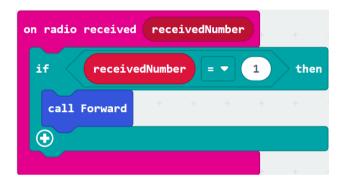
12. Add the block 'function [Backward]' (Function) and the block 'motor [ALL] direction [backward] speed [50]' (Maqueen Plus). Add the block 'show leds [] (Basic).

 Add the block 'function [Turn Left]' (Function). Add the block 'motor [left] direction [rotate forward] speed [0]' (Maqueen Plus) and 'motor [right] direction [rotate forward] speed [50]'. Add the block 'show leds [→]' (Basic).


14. Add the block 'function [Turn Left]' (Function). Add the block 'motor [left] direction [rotate forward] speed [0]' (Maqueen Plus) and 'motor [right] direction [rotate forward] speed [50]'. Add the block 'show leds [←]' (Basic).

functior	Turn Ri	ght 🔗						
motor	left 🔻	direction	rotate	forwar	d 🔻	speed	50	
motor	right 🔻	direction	rotate	forwa	rd 🔻	spee	d 0	
show 1	.eds	+ +	+	÷	+	+	+	4
		• +						
		- - -						
		.						
		-						


15. Add the block 'function [Stop]' (Function). Add the block 'motor [All] stop' (Maqueen Plus). Add the block 'show leds [---]' (Basic).


16. Add the block 'on radio received [receivedNumber]' (Radio) and the block 'if...then' (Logic) and '[0] = [0]' (Logic).

17. For condition 'if', drag the '[receivedNumber]' to replace left '[0]' and replace the value another '[0]' to '[1]'.

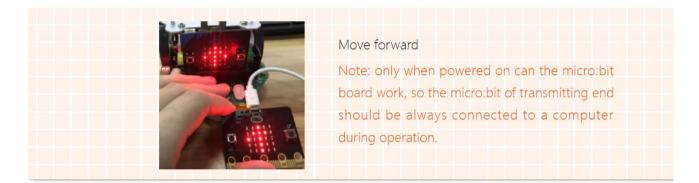
18. For condition 'then', add the block '[call Forward]' (Function).

19. Add the block 'if...then' (Logic). Duplicate the 1st block conditional 'if''[----]=[----]' and replace value '[1]' to '[2]'. For condition 'then', add the block '[call Backward]' (Function).

on radio	received	rece	ivedNi	umber		+
if	receive	edNumbe		• (1	then
call	Forward	+	+	+	+	+
•						
if	receive	edNumbe		•	2	then
call	Backward	+	+	+	+	+
\bigcirc						

20. Add the block 'if...then' (Logic). Duplicate the 2nd block conditional 'if''[----]=[----]' and replace value '[2]' to '[3]'. For condition 'then', add the block '[call Turn Left]' (Function).

on radio received receivedNumber
if receivedNumber = • 1 then
call Forward
•
if receivedNumber = - 2 then
call Backward
\odot
if receivedNumber = - 3 then
call Turn Left
•
· · · · ·


21. Add the block 'if...then' (Logic). Duplicate the 3rd block conditional 'if''[----]=[----]' and replace value '[3]' to '[4]'. For condition 'then', add the block '[call Turn Right]' (Function).

on radio received receivedNumber
if receivedNumber = - 1 then
call Forward
\odot
if receivedNumber = - 2 then
call Backward
\odot
if receivedNumber = - 3 then
call Turn Left
\odot
if receivedNumber = - 4 then
call Turn Right
\odot
+ +

22. Add the block 'if...then' (Logic). Duplicate the 4th block conditional 'if''[----]=[----]' and replace value '[4]' to '[5]'. For condition 'then', add the block '[call Stop]' (Function).

on radio received receivedNumber
if receivedNumber = 1 then
call Forward
\odot
if receivedNumber = 2 then
call Backward
\odot
if receivedNumber =
call Turn Left
•
if receivedNumber = • 4 then
call Turn Right
\odot
if receivedNumber = • 5 then
call Stop
€

- 23. Click **Download** to transfer your code to 2nd unit micro:bit.
- 24. When we complete all the above steps, turn Maqueen Plus's power switch on, then we can use the micro:bit of the transmitting end to control the car.

Program Link :

Motion Sensing Racing Car - Transmitting End :

https://makecode.microbit.org/_Tpdgrt4yaKEh

Motion Sensing Racing Car – Receiving End :

https://makecode.microbit.org/_WLM6WXhPLLLH